
Page 61 of 69Ndipmong A. Udoh and Udechukwu P. Egbuhuzor / Int.J.Pure&App.Math.Res. 5(1) (2025) 61-69

Article Info

Abstract
In this study, the performance of four numerical techniques for solving Initial Value
Problems (IVPs) in ordinary differential equations: Euler’s method, Runge-Kutta fourth-
order (RK4), Heun’s method, and Milne’s method is evaluated. Based on the analysis,
RK4 and Milne’s methods provide excellent accuracy and sustain low absolute errors
over time, thus making them perfect for high-precision tasks. Heun’s method offers a
balance between accuracy and efficiency, making it a moderate advance over Euler’s. On
the other hand, Euler’s method exhibits the biggest absolute errors, particularly when
step sizes are bigger, which makes it less appropriate for applications that demand a high
level of precision. The findings show that while choosing a numerical approach for IVPs,
accuracy and computational efficiency must be balanced.
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1. Introduction

Numerical methods are essential tools for solving Ordinary Differential Equations (ODEs), especially when obtaining
analytical solutions is challenging or impossible. The Euler, Runge-Kutta, Heun, and Milne methods are some of the
most popular numerical techniques for solving Initial Value Problems (IVPs) of ODEs among the many that have been
developed. These methods are particularly effective for approximating the solutions of first-order differential equations,
which are common in scientific and engineering problems such as physics simulations, population dynamics, and
chemical reactions.

A considerable body of work exists that compares the effectiveness of these methods for solving IVPs in ODEs.
Early comparisons of the Euler’s and Runge-Kutta methods, such as those by Butcher (2016), Atkinson et al. (2019) and
Boyce and DiPrima (2001) emphasized the relative simplicity of Euler’s method but also pointed out its limitations in
terms of accuracy and stability, particularly for stiff equations. On the contrary, the RK4 method was shown to provide
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better accuracy at a relatively low computational cost. Another significant area of research has been the development
of predictor-corrector methods, such as Heun’s and Milne’s methods. An adaptive version of Milne’s approach was
presented by Jarratt (1973) who demonstrated that it performed better in terms of accuracy for stiff differential equations
than both Euler’s and Runge-Kutta methods. It has been shown that Milne’s method is particularly effective when a
solution needs to be computed over a long period of time or when high accuracy is required at each step.

Error analysis and stability considerations in numerical methods for ODEs have been the focus of recent works. Li
and Wang (2020) provided a detailed comparison of the stability regions for several numerical methods, including
Euler’s and Runge-Kutta methods, for stiff differential equations, highlighting the significance of selecting the
appropriate method based on the problem’s stiffness and the required accuracy. Zhou et al. (2021) conducted a
comparative study on the performance of various Runge-Kutta methods and showed that higher-order methods, such
as RK4, generally outperform simpler methods, such as Euler’s method in terms of global error. They also pointed out
that methods such as Heun’s and Milne’s are effective for solving stiff problems, where traditional Runge-Kutta
methods might struggle with stability. Adaptive step-size control has also been examined in more recent research using
techniques like Heun’s and Milne’s. Adaptive step-size control and error estimates in Milne’s method were examined by
Mojaradi et al. (2022), who shown that this method can provide high accuracy with fewer function evaluations,
particularly for large-scale problems. Using a Python program, Dharma and Bhatt (2023) compared Euler’s and Runge
Kutta’s methods. Their computational approach shows that the Runge-Kutta method is better for small step sizes at
solving differential equations than Euler’s method. Shior and Patel (2022) looked into the Adam-Moulton predictor-
corrector approach and Milne’s Simpson predictor-corrector method. The results demonstrated that, in comparison to
Milne’s Simpson predictor-corrector approach, the Adam-Moulton predictor-corrector method is highly stable and
probably more reliable. According to, Okeke et al. (2019) there is a good agreement between the exact solutions and the
approximate solutions that are derived using the Runge Kutta and Euler’s methods.

Recent literature has not adequately examined a direct comparison of the accuracy and stability of Euler’s approach,
Runge-Kutta methods, Heun’s method, and Milne’s method, despite the advances in numerical techniques for ODEs.
This research attempts to bridge this gap by comparing these four methods’ performance on a set of benchmark
problems and provide a thorough analysis based on their error behavior and stability properties. The findings of this
research will contribute to the selection of appropriate methods for solving ODEs in various scientific and engineering
applications, especially when dealing with different levels of problem stiffness and desired accuracy.

2. Materials and Methods

Here, we will examine four numerical methods for estimating the solutions to the Initial Value Problems (IVPs) of the first
order differential equations of the following form:

y′ = f(x, y), x ∈ (a, b), y(x0) = y0  ...(2.1)

wherey′ =
dy
dx is the derivative of the unknown function y(x) with respect to x, f(x, y) is a given function that defines the

relationship between x and y, x0 is the initial value of the independent variable x and y0, is the initial value of the
dependent variable y, which is the value of y(x) at x = x0.

2.1. Euler’s Method

Euler’s Method is an essential numerical method for solving initial value problems in ODEs. It was introduced by
Leonhard Euler. The method uses the slope of the differential equation to move in small steps along the tangent at each

point in order to approximate solutions (Butcher, 2016; Lambert, 2021). Given a differential equation

ݕ݀
ݔ݀

= (2.2)... (ݕ,ݔ)݂

and an initial condition y(x0) = y0, Euler’s method calculates the subsequent value yn+1 as follows:
yn+1 = yn + hf(xn, yn) ...(2.3)

where h is the selected step size (Chapra and Canale, 2010).
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2.2. Fourth Order Runge-Kutta Method

Runge-Kutta (RK) methods are a class of numerical techniques essential for solving initial value problems in ODEs. The
methods were developed by Carl Runge and Martin Kutta in the early 20th century. These methods enhance accuracy
over simpler techniques, such as Euler’s method, by evaluating intermediate points within each step (Butcher, 2016;
Hairer et al., 1993). This approach allows RK methods to achieve a desirable balance between accuracy and computational
efficiency, making them fundamental tools in numerical analysis and scientific computing (Atkinson et al., 2019; Chapra
and Canale, 2010). In this study, we shall be looking at the fourth order Runge-Kutta Method (RK4) only.

For a given IVP, the RK4 method advances one step from (xn, yn) to (xn+1, yn+1) using the formula:

1+݊ݕ = ݊ݕ +
ℎ
6

(݇1 + 2݇2 + 2݇3 + ݇4) ...(2.4)

where the terms k1, k2, k3 and k4 are intermediate slope estimates calculated as follows:

݇1 = ℎ݂(݊ݔ , ݕ݊ )

݇2 = ℎ݂ ൬݊ݔ +
ℎ
2 , ݕ݊ +

ℎ
2 ݇1൰

݇3 = ℎ݂ ൬݊ݔ +
ℎ
2

݊ݕ, +
ℎ
2
݇2൰

݇4 = ℎ݂(݊ݔ + ℎ, ݕ݊ + ℎ݇3)
This formulation results in a fourth-order accurate method, as it reduces errors significantly by averaging slope

estimates at four strategically chosen points within each step, providing a more refined solution than lower-order
methods (Butcher, 2016; Hairer et al., 1993).

2.3. Heun’s Method

This is a modification of Euler’s method, which uses a predictor-corrector method to achieve more accuracy. Heun’s
method is more accurate than Euler’s method because it considers two slopes: one at the beginning of the interval (like
in Euler’s method) and another at the conclusion of the interval. Euler’s method only employs one slope to estimate the
next value of the solution. The following steps can be used to express the method:

i. The Predictor Step (Euler estimate):

ݕ݊ +1
(݌) = ݕ݊ + ℎ݂(݊ݔ (݊ݕ, ...(2.5)

This gives an initial estimate of the solution at the next point.

ii. The Corrector Step:

1+݊ݕ = ݊ݕ +
ℎ
2 ቂ݂

݊ݔ) , ݕ݊ ) + ݂ቀ1+݊ݔ , ݕ݊ +1
(݌) ቁቃ ...(2.6)

This averages the slopes within the interval to improve the prediction. Because Heun’s method requires averaging
the slopes, it is often referred to as a modified Euler method and falls under the predictor-corrector category.

2.4. Milne’s Method

This method is based on using previously computed values of the solution to predict future values.The predictor step
of Milne’s method is based on Simpson’s 3/8 rule of integration. Given the values of y at previous points
,3−݊ݔ 2−݊ݔ , ,1−݊ݔ ݊ݔ , the solution at the next point yn+1 is predicted using the following formula:

1+݊ݕ
(݌) = 3−݊ݕ +

4ℎ
3

(2݂݊ −2 − ݂݊ −1 + 2݂݊ ) ...(2.7)

where ݂݅ = ,ݔ)݂ 1+݊ݕ represents the derivative (slope) at point xi. After obtaining the predicted value (ݕ
(݌)

, Milne’ss
method applies a corrector to improve the accuracy of the prediction. The corrector uses the trapezoidal rule and the
known values of the function to adjust the predicted value:
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𝑦𝑛+1 = 𝑦𝑛−1 +
ℎ

3
ቀ𝑓𝑛−1 + 𝑓𝑛−1

(𝑝)
ቁ ...(2.8)

This step refines the predicted value by averaging the slopes at points x
n–1

 and 𝑥𝑛+1
(𝑝)

3. Numerical Analysis

In this section, we consider four numerical methods discussed in section 2 for finding the approximate solution (2.1).

Example 1: Solve the initial value problem 𝑦′ = 𝑥 + 𝑦,  𝑦(0) = 1 , on the interval 0 < x < 1. Use different step sizes

h = 0.1, 0.05, 0.025, and 0.0125.

Solution: The results obtained are presented in Tables 1(a)-(d) and visually on Figures 1 and 2.

𝒙𝒏 
Exact 

Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 

𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 

0.1 1.110342 1.100000 0.010342 1.110342 0.000000 1.110000 0.000342 1.110342 0.000000 

0.2 1.242806 1.220000 0.022806 1.242805 0.000000 1.242050 0.000756 1.242805 0.000000 

0.3 1.399718 1.362000 0.037718 1.399717 0.000001 1.398465 0.001252 1.399717 0.000001 

0.4 1.583649 1.528200 0.055449 1.583648 0.000001 1.581804 0.001845 1.583649 0.000000 

0.5 1.797443 1.721020 0.076423 1.797441 0.000001 1.794894 0.002549 1.797442 0.000001 

0.6 2.044238 1.943122 0.101116 2.044236 0.000002 2.040857 0.003380 2.044237 0.000000 

0.7 2.327505 2.197434 0.130071 2.327503 0.000002 2.323147 0.004358 2.327505 0.000001 

0.8 2.651082 2.487178 0.163904 2.651079 0.000003 2.645578 0.005504 2.651081 0.000001 

0.9 3.019206 2.815895 0.203311 3.019203 0.000003 3.012364 0.006843 3.019205 0.000001 

1.0 3.436564 3.187485 0.249079 3.436559 0.000004 3.428162 0.008402 3.436563 0.000001 

Table 1(a): Numerical Approximations for Step Size h = 0.1

Table 1(b): Numerical Approximations for Step Size h = 0.05

𝒙𝒏 Exact 
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 

𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 𝒚(𝒙𝒏) Error 

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 

0.1 1.110342 1.105000 0.005342 1.110342 0.000000 1.110253 0.000089 1.110342 0.000000 

0.2 1.242806 1.231012 0.011793 1.242805 0.000000 1.242609 0.000196 1.242806 0.000000 

0.3 1.399718 1.380191 0.019526 1.399718 0.000000 1.399393 0.000325 1.399718 0.000000 

0.4 1.583649 1.554911 0.028739 1.583649 0.000000 1.583170 0.000479 1.583649 0.000000 

0.5 1.797443 1.757789 0.039653 1.797442 0.000000 1.796781 0.000662 1.797443 0.000000 

0.6 2.044238 1.991713 0.052525 2.044237 0.000000 2.043360 0.000877 2.044238 0.000000 

0.7 2.327505 2.259863 0.067642 2.327505 0.000000 2.326374 0.001131 2.327505 0.000000 

0.8 2.651082 2.565749 0.085333 2.651082 0.000000 2.649653 0.001429 2.651082 0.000000 

0.9 3.019206 2.913238 0.105968 3.019206 0.000000 3.017430 0.001777 3.019206 0.000000 

1.0 3.436564 3.306595 0.129968 3.436564 0.000000 3.434382 0.002182 3.436564 0.000000 
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Table 1(d): Numerical Approximations for Step Size h = 0.0125

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 
0.1 1.110342 1.108972 0.001370 1.110342 0.000000 1.110336 0.000006 1.110342 0.000000 
0.2 1.242806 1.239779 0.003026 1.242806 0.000000 1.242793 0.000013 1.242806 0.000000 
0.3 1.399718 1.394702 0.005016 1.399718 0.000000 1.399697 0.000021 1.399718 0.000000 
0.4 1.583649 1.576261 0.007388 1.583649 0.000000 1.583619 0.000031 1.583649 0.000000 
0.5 1.797443 1.787239 0.010204 1.797443 0.000000 1.797400 0.000043 1.797443 0.000000 
0.6 2.044238 2.030710 0.013528 2.044238 0.000000 2.044181 0.000056 2.044238 0.000000 
0.7 2.327505 2.310068 0.017437 2.327505 0.000000 2.327433 0.000073 2.327505 0.000000 
0.8 2.651082 2.629065 0.022017 2.651082 0.000000 2.650990 0.000092 2.651082 0.000000 
0.9 3.019206 2.991841 0.027366 3.019206 0.000000 3.019092 0.000114 3.019206 0.000000 
1.0 3.436564 3.402970 0.033594 3.436564 0.000000 3.436423 0.000140 3.436564 0.000000 

Table 1(c): Numerical Approximations for Step Size h = 0.025

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 
0.1 1.110342 1.107626 0.002716 1.000000 0.000000 1.110319 0.000023 1.000000 0.000000 
0.2 1.242806 1.236806 0.006000 1.110342 0.000000 1.242756 0.000050 1.110342 0.000000 
0.3 1.399718 1.389778 0.009940 1.242806 0.000000 1.399635 0.000083 1.242806 0.000000 
0.4 1.583649 1.569011 0.014638 1.399718 0.000000 1.583527 0.000122 1.399718 0.000000 
0.5 1.797443 1.777233 0.020210 1.583649 0.000000 1.797274 0.000169 1.583649 0.000000 
0.6 2.044238 2.017452 0.026786 1.797443 0.000000 2.044014 0.000224 1.797443 0.000000 
0.7 2.327505 2.292990 0.034515 2.044238 0.000000 2.327217 0.000288 2.044238 0.000000 
0.8 2.651082 2.607514 0.043568 2.327505 0.000000 2.650718 0.000364 2.327505 0.000000 
0.9 3.019206 2.965071 0.054136 2.651082 0.000000 3.018754 0.000453 2.651082 0.000000 
1.0 3.436564 3.370128 0.066436 3.019206 0.000000 3.436008 0.000556 3.019206 0.000000 

Figure 1: Numerical Approximations for Different Step Sizes: [h = 0.1, 0.05, 0.025, 0.0125]
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Figure 2: Error for Different Step Sizes from the Different Methods
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Example 2: Solve the initial value problem ݕ ′ = ݕ − 2ݔ + 1, y(0) = 0.5, on the interval 0 < x < 1. Use different step sizes
h = 0.1, 0.05, 0.025 and 0.0125.

Solution: The results obtained are presented in Tables 2(a)-(d) and visually on Figures 3 and 4.

Table 2(a): Numerical Approximations for Step Size h = 0.1

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 0.500000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 
0.1 0.657415 0.650000 0.007415 0.657414 0.000000 0.657000 0.000415 0.657414 0.000000 
0.2 0.829299 0.814000 0.015299 0.829298 0.000000 0.828435 0.000864 0.829298 0.000000 
0.3 1.015071 0.991400 0.023671 1.015070 0.000001 1.013721 0.001350 1.015070 0.000001 
0.4 1.214088 1.181540 0.032548 1.214087 0.000001 1.212211 0.001876 1.214087 0.000000 
0.5 1.425639 1.383694 0.041945 1.425638 0.000001 1.423194 0.002446 1.425639 0.000001 
0.6 1.648941 1.597063 0.051877 1.648939 0.000001 1.645879 0.003062 1.648940 0.000001 
0.7 1.883124 1.820770 0.062354 1.883122 0.000001 1.879396 0.003728 1.883123 0.000001 
0.8 2.127230 2.053847 0.073383 2.127228 0.000002 2.122783 0.004447 2.127229 0.000001 
0.9 2.380198 2.295231 0.084967 2.380196 0.000002 2.374975 0.005224 2.380197 0.000001 
1.0 2.640859 2.543755 0.097105 2.640857 0.000002 2.634797 0.006062 2.640858 0.000001 

Table 2(b): Numerical Approximations for Step Size h = 0.05

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 0.500000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 
0.1 0.657415 0.653625 0.003790 0.657415 0.000000 0.657309 0.000106 0.657415 0.000000 
0.2 0.829299 0.821472 0.007827 0.829299 0.000000 0.829078 0.000221 0.829299 0.000000 
0.3 1.015071 1.002947 0.012123 1.015071 0.000000 1.014725 0.000345 1.015071 0.000000 
0.4 1.214088 1.197400 0.016688 1.214088 0.000000 1.213608 0.000480 1.214088 0.000000 
0.5 1.425639 1.404108 0.021531 1.425639 0.000000 1.425014 0.000625 1.425639 0.000000 
0.6 1.648941 1.622279 0.026662 1.648941 0.000000 1.648158 0.000783 1.648941 0.000000 
0.7 1.883124 1.851038 0.032086 1.883124 0.000000 1.882171 0.000953 1.883124 0.000000 
0.8 2.127230 2.089419 0.037811 2.127230 0.000000 2.126093 0.001136 2.127230 0.000000 
0.9 2.380198 2.336359 0.043839 2.380198 0.000000 2.378864 0.001335 2.380198 0.000000 
1.0 2.640859 2.590686 0.050173 2.640859 0.000000 2.639310 0.001549 2.640859 0.000000 
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Table 2(c): Numerical Approximations for Step Size h = 0.025

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 0.500000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 
0.1 0.657415 0.655498 0.001916 0.657415 0.000000 0.657388 0.000027 0.657415 0.000000 
0.2 0.829299 0.825338 0.003960 0.829299 0.000000 0.829243 0.000056 0.829299 0.000000 
0.3 1.015071 1.008933 0.006137 1.015071 0.000000 1.014983 0.000087 1.015071 0.000000 
0.4 1.214088 1.205635 0.008453 1.214088 0.000000 1.213966 0.000121 1.214088 0.000000 
0.5 1.425639 1.414726 0.010913 1.425639 0.000000 1.425481 0.000158 1.425639 0.000000 
0.6 1.648941 1.635419 0.013522 1.648941 0.000000 1.648743 0.000198 1.648941 0.000000 
0.7 1.883124 1.866840 0.016284 1.883124 0.000000 1.883124 0.000241 1.883124 0.000000 
0.8 2.127230 2.108028 0.019202 2.127230 0.000000 2.126942 0.000287 2.127230 0.000000 
0.9 2.380198 2.357919 0.022279 2.380198 0.000000 2.379861 0.000337 2.380198 0.000000 
1.0 2.640859 2.615341 0.025518 2.640859 0.000000 2.640468 0.000391 2.640859 0.000000 

Table 2(d): Numerical Approximations for Step Size h = 0.0125

 Exact ࢔࢞
Solution 

Euler Method Runge Kutta Method Heun’s Method Milne’s Method 
 Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟ Error (࢔࢞)࢟

0.0 0.500000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 
0.1 0.657415 0.656451 0.000964 0.657415 0.000000 0.657408 0.000007 0.657415 0.000000 
0.2 0.829299 0.827307 0.001992 0.829299 0.000000 0.829285 0.000014 0.829299 0.000000 
0.3 1.015071 1.011983 0.003088 1.015071 0.000000 1.015049 0.000022 1.015071 0.000000 
0.4 1.214088 1.209833 0.004255 1.214088 0.000000 1.214057 0.000030 1.214088 0.000000 
0.5 1.425639 1.420145 0.005494 1.425639 0.000000 1.425600 0.000040 1.425639 0.000000 
0.6 1.648941 1.642131 0.006810 1.648941 0.000000 1.648891 0.000050 1.648941 0.000000 
0.7 1.883124 1.874920 0.008204 1.883124 0.000000 1.883063 0.000061 1.883124 0.000000 
0.8 2.127230 2.117552 0.009677 2.127230 0.000000 2.127157 0.000072 2.127230 0.000000 
0.9 2.380198 2.368966 0.011233 2.380198 0.000000 2.380114 0.000085 2.380198 0.000000 
1.0 2.640859 2.627989 0.012870 2.640859 0.000000 2.640761 0.000098 2.640859 0.000000 

Figure 3: Numerical Approximations for Different Step Sizes: [h = 0.1, 0.05, 0.025, 0.0125]
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4. Discussion

Tables 1 and 2, and Figures 2 and 4illustrate how the absolute error behaves for each numerical method as step sizes
h = 0.1, h = 0.05, h = 0.025, and h = 0.0125 are varied over the interval xn from 0.0 to 1.0.
a. The plot for Euler’s Method indicates that the error increases noticeably with the interval. With increasing step sizes

(e.g., h = 0.1), the absolute error increases significantly, peaking at xn = 1.0. This shows that Euler’s method is
sensitive to step size, with smaller h values yielding more accurate results. However, the error remains relatively high
when compared to alternative methods.

b. The absolute errors for RK4 are essentially insignificant across all step sizes, with errors close to zero throughout
the interval. The method maintains a minimal error even at the largest step size h = 0.1. This suggests that RK4 is
highly stable and accurate, providing reliable results even with relatively large step sizes.

c. Heun’s Method, which is an improved Euler method, shows significantly smaller errors compared to Euler’s Method,
although not as minimal as RK4. The absolute errors reduce as the step size decreases, while the error accumulation
across the interval remains low. According to this pattern, Heun’s Method provides a balance between accuracy
and computational effort, with moderate sensitivity to the choice of h.

d. Milne’s Method has very low absolute errors across the interval and performs comparable to RK4. Even at h = 0.1,
the errors remain close to zero for all step sizes. Similar to RK4, Milne’s Method exhibits stability and precision,
demonstrating its suitability for problems requiring high accuracy with minimal error growth over time.

5. Conclusion

From the analysis of the absolute errors across methods, we can conclude that: RK4 and Milne’s methods consistently
exhibit higher accuracy, maintaining very low absolute errors across the interval, making them preferable for tasks
demanding high precision. Heun’s Method provides an average improvement in accuracy over Euler’s method,
demonstrating that it can be a good balance between the high precision of RK4 and the computational efficiency of
Euler’s Method. Out of the four methods, Euler’s Method has the biggest absolute error, with error values noticeably
increasing as step size increases. As a result, it is less appropriate for applications where accuracy is crucial, particularly
over longer intervals.

6. Recommendations

The following recommendations are drawn from this study:

1. For applications requiring precise results, it is recommended to utilize the RK4 method or Heun’s Method. These
methods have demonstrated superior performance in terms of accuracy, making them preferable for solving initial
value problems in ordinary differential equations.

Figure 4: Error for Different Step Sizes from the Different Methods
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2. Considering the potential benefits of hybrid methods, exploring combinations of different numerical techniques
may yield improved results. This approach can enhance performance in specific applications, particularly in climate
modeling and environmental forecasting.

3. Further research into numerical methods, particularly those that optimize the balance between computational efficiency
and accuracy, is warranted. This aligns well with ongoing investigations in fields such as sustainable energy
systems, where precise modeling is crucial.
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